Modernising Airspace

Andy Shand
NATS GM Customer Affairs &
Co-Chair FAS Industry Implementation Group

AOA Operations & Safety Conference 23 June 2014
Modernising Airspace

• Basic structure of UK airspace developed over 40 years ago
• Since then, passenger demand has increased a hundred fold
• Radically improved Aircraft performance & navigation capability
• SES goals to simplify & harmonise ATM improving safety, flight efficiency and reduce cost
• Environmental considerations
• Strategy for all users of the airspace
FAS sets out the UK’s ambition to modernise the airspace system in line with SES II and SESAR goals.

- Developed & Consulted by CAA, NATS, MoD and DfT
- Public & Industry Consultation

2010-2011

FAS Industry Implementation Group formed 2011/12

“First concrete step toward SESAR deployment in Europe” Patrick Ky SESAR JU.

Dec 2012
In 2013 FAS entered Deployment Phase

FAS Governance Arrangements and Working Groups

FAS Deployment Steering Group (FAS-DSG)

- CAA / NATS
- Airlines
- Airports
- ANSPs
- IAA
- MoD
- GA
- DfT
- TSC

(Co-Chair - M Rolfe & M Swan) (Director Level Representatives)

Network Optimisation Working Group

- NATS / CAA
- Airlines
- Airports
- MoD
- TSC
- ACL

Airspace Redesign and PBN Working Group

- NATS
- CAA
- Airlines
- Airports
- GA

Scottish TMA

Manchester TMA

CAA FAS Policy and Regulatory Programme Board

- CAA
- NATS
- IAA
- MoD
- DfT

FAS Industry Implementation Group (FASIIG)

(Co-Chair – British Airways and NATS)

FAS VFR Implementation Group (FASVIG)

(Chair – Light Aircraft Association)

Delivery Assurance, Deployment Issues, Communications

Industry Collaboration and Alignment of Investment Plans

FAS Safety Project

Policy and Regulatory Requirements and Issues
FAS Deployment Plan

1. Airport CDM
 - Implementing the systems and processes to integrate the aircraft turnaround phase into the ATM system and sequence departures to maximise runway efficiency.

2. UK Wide PBN Implementation
 - Deploying PBN Arrival & Departure routes across UK airports.
 - Enhancing PBN Route Spacing Standards.
 - RNAV1 Mandate in LTMA to support LAMP.

3. PBN Departure Enhancements
 - Maximising the benefits of RNAV1 Departures.

4. Harmonised Transition Altitude
 - A 3.5 year lead time to implement a higher TA for UK working to harmonisation at 18,000ft across controlled and uncontrolled airspace.

5. Terminal Airspace Redesign
 - Significant commercial benefits and increased access for GA.
 - Final TMA design based on RNP.
 - A-CDM data enables Queue & Network Mgmt.

6. Enhanced VFR Operations and Low Density, Low Complexity Airspace
 - LAMP P2 & NTCA dependent on a higher TA.

7. Enhanced FUA
 - To maximise use of temporary airspace for Civil, Military and General Aviation operators.

8. Arrival Management
 - Streaming traffic inbound into the LTMA across the UK & Ireland FAB to reduce stacking & delays.

9. Queue Management
 - Arrival Management across FABs, combined with Departure Management to de-conflict outbound traffic flows and A-CDM to integrate the turnaround process.

10. Network Management
 - Supporting development of the European Network Manager's capability to smooth traffic flows, remove pinch points and enable efficient flight profiles across the system.

11. Network Wide
 - En-route / Network Wide
Airspace Re-Design & Performance Based Navigation
Today's Departure Routes
Heathrow Westerly Example

• Many departures share common initial route legs

• Very few (if any) aircraft fly the published route after they reach 4000ft

• SIDs are “single lane roads”

• Need to split routes by 30-45 degrees to allow 1 minute departure intervals
Performance-based Navigation
FAS Trials gathering data to support new design standards
Performance-based Navigation
Data analysis
Route Spacing & SID Divergence Guidance

- PBN allows closer spaced, more precise routes
- Reduced separation between departures can increase runway throughput, flight efficiency and noise abatement opportunities
- ‘Enhanced’ Route Spacing & SID Divergence Standards due in March 2015 developed by CAA using data from the FAS trials
- FAS Airspace & PBN Working Group industry focal point to support development of guidance & will review draft material
- Based on DEP work, Gatwick ADNID SID with 21 degree divergence & 1 minute departure split introduced 16 June 2014
RNAV1 Mandate in London TMA

• RNAV 1 as the minimum performance standard for aircraft navigational capability in the London Terminal Area (LTMA) from **November 2017**

• That the route network be redesigned to a minimum RNAV 1 standard before **November 2019** by NATS (above c. 4000ft.) and the Airports (below c. 4000ft)
Evolving PBN Capability

- LTMA Mandate is based on RNAV1
- Airports can use higher standards for specific applications
- E.g. RF Legs & RNP “AR”

PBN (RNP1 RF) Departure Trial at Stansted
Noise Respite Trial

On average, around 16-17 flights arrive at Heathrow each morning between 4.30am and 6.00am.

The trial explored whether routing these flights in a more defined way – particularly at the beginning of their approach into Heathrow – could offer more predictability for the people living below.

Find out more at nats.aero/blog
London Airspace Redesign
London Airspace Management Programme redesign of LTMA based on RNAV1

• LAMP Phase 1 Winter 15
• Gatwick & City + changes to Stansted routes
• Aligned with Southend ACP
• £7-14m fuel savings
• Increased capacity & more systemised airspace
• 2017 Transition Altitude to 18k
• Phase 2 2017-19 Heathrow, Stansted & Luton Arrivals & Deps

2020 LAMP Design
Scottish TMA DDG
- Increase runway throughput with reduced SID separations
- 3nm Separation in TMA
- PBN Arrival and departure routes
- Evaluate High Performance SIDs
- VOR Rationalisation timetable
- Evaluate 3nm PBN separation
- Strengthen interfaces between adjacent airports and en-route

Northern Terminal Control Area
- Detailed PBN design & Sims Jul/Oct
- Design workshops completed with Leeds, Liverpool and Manchester
- In process of setting up an NTCA DDG – supported by airports
UK & Ireland Transition Altitude

• CAA and IAA announced the intent to harmonise the Transition Altitude at 18,000ft across UK and Ireland FAB

• Critical to the deployment of departure procedures that climb continuously to the cruise as part of LAMP Phase 2

• Effectively “lifts the lid” on the TMA

• Decision has been taken to implement (Dec 13)

• CAA consultation on CONOPs November 15 – February 2016

• Target implementation date Nov 2017
Approach with Vertical Guidance

• Replacement of non precision approach with GPS approach procedures (LNAV/Baro VNAV/LPV)
• Benefit resilience/minima & safety
• Opportunity being pursued for GSA part funding (c.50%) of roll-out to UK airfields
• Over 30 airfields have expressed interest
• Call response due Sept 2014
Network Integration
Integrating Airports into the Network

- Departure Planning Information project initiated in 2013
- Funded by Transport Systems Catapult
- Aim to provide accurate departure planning information to European Network Manager via:
 - Enabling DPI interface from 8 NATS EFPS towers
 - Implementing DPI interface at non EFPS towers
- DPI trial now under way with London City
- Tender process for Non-EFPS Airports under way via TSC is slightly delayed expected Oct 14 – supported by AOA members
- Programme aim to provide accurate DPI data for 80% of UK traffic
DPI Timeline / Progress to-date

Set-up Governance & Resources, Requirement capture, Benefit Management Plan

EFPS Towers: Requirements capture
EFPS Towers: solution & roll-out review
EFPS Towers: Core software Build
EFPS Towers: Site roll-out

Programme Management (inc. Business Case)

Non-EFPS Towers: Requirements Capture
Non-EFPS Towers: Tender Process & roll-out plan
Non-EFPS Towers: Core solution development
Non-EFPS Towers: Core Site roll-out

Complete Delivery

Jul-14

2014/15
Arrival Management

• Reduce orbital holding and sequence aircraft over wider distance
• Speed reduction in en-route & descent when holding predicted to be > 9 minutes
• Target up to 4 minutes reduction in holding at peaks
• Aircraft burn c.90% less fuel than in orbital holds = $15-20m savings per annum
• Supported by Reims, Maastricht, Shannon & Prestwick & will be expanded to DFS & Brest
• BAW74 on 21/3/14 first aircraft to use 350nm XMAN validated by Reims
• First step towards SESAR arrival management vision
Heathrow typically 160-180k minutes of delay per annum due to headwinds.
TIME BASED SEPARATION SYSTEM
Time Based Separation

- World First TBS implementation at Heathrow in March 2015
- Provides approach controllers with dynamic separation indicators:
 - Based on real time winds
 - New time based separation rules
- Expected to save 80,000+ minutes of delay annually
- Next step will be mixed mode runway e.g. Gatwick

Wake vortices dissipate quicker so separation distance can be reduced safely.
FAS Deployment Plan highly aligned with PCP & Airports Commission

SESAR PCP

AF1 - Extended AMAN & PBN in high density TMAs
AF2 - Airport Integration & Throughput Functionalities
AF3 - Flexible Airspace Management & Free Route
AF4 - Network Collaborative Management

Discussing how FAS will integrate with Deployment Manager
FAS 2014/15

- Significant progress made in 2013/14
- Only discussed a small part of FAS Deployment Plan today
- Strong & growing support from across the industry
- New groups
- FAS driving changes to regulatory guidance which will enable new designs & procedures
- Opportunities for external funding
- Focus on external communications this year
Thank you for listening